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Interacting growth walk: A model for generating compact self-avoiding walks
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We propose an algorithm based on local growth rules for kinetically generating self-avoiding walk configu-
rations at any given temperature. This algorithm, called the interacting growth walk~IGW! model, does not
suffer from attrition on a square lattice at zero temperature, in contrast to the existing algorithms. More
importantly, the IGW model facilitates growing compact configurations at lower temperatures—a feature that
makes it attractive for studying a variety of processes such as the folding of proteins. We demonstrate that our
model correctly describes the collapse transition of a homopolymer in two dimensions.
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The configurational properties of linear polymers und
going a collapse transition at a tricritical temperatureTu ,
called theu point, have been studied extensively because
their relevance to a wide variety of applications such as,
example, the protein folding problem@1#. The average radius
of gyration~or equivalently, the average end-to-end distan!
and the configurational entropy of a long polymer chain ha
a universal~i.e., system-independent! behavior characterized
by the exponentsn andg, respectively@2#. These exponents
have distinct sets of values for the three temperature regim
T.Tu , T5Tu , andT,Tu @2,3#. In order to understand th
statistical nature of polymer conformations in these th
universal regimes, interacting self-avoiding walk~ISAW!
models with appropriate non-bonded nearest neigh
~nbNN! interactions have been proposed@4#.

Let SN denote an ensemble of equally weightedN-step
SAW configurations, generated on a lattice by a stand
algorithm @5#. If e0 is the energy associated with any nbN
contact, a SAW configuration with a total ofnNN such con-
tacts will have an energyE5nNNe0. Hence, one may assig
to it a Boltzmann weight proportional toe2bE, where b
51/kBT, kB is the Boltzmann constant andT the tempera-
ture. Such Boltzmann-weighted SAW configurations con
tute an ISAW ensemble, denoted byIN(b). By this defini-
tion, IN(b50) is the same asSN because all the
configurations of the former have the same probability
occurrence irrespective of their energies. Therefore, in
context of the ISAW ensemble,SN may be thought of as
representing a polymer at ‘‘infinite’’ temperature. The stat
tical accuracy of any physical quantity averaged overIN(b)
becomes poorer at lower temperatures because signifi
contribution comes from a smaller number of configuratio
@6#. In order to improve the statistics, especially at low te
peratures, it is necessary to generate a very large ensem
SN ; this process could become prohibitively slow due
severe attrition for largeN.

A better solution is to devise an algorithm based on s
able geometrical~athermal, or ‘‘infinite’’ temperature! rules
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for generating an ensemble,GN , identically equivalent to
IN(b.0). For example, the kinetic growth walk~KGW! @7#
or the smart kinetic walk@8# on a honeycomb lattice straigh
away generates an ensemble of configurations equivalen
the ISAW ensembleIN(b5 ln 2). Having generated the
athermal ensembleGN by such a geometric algorithm, en
semble averages corresponding to a lower temperature c
be obtained by Boltzmann weighting these configurations
propriately. This would ensure better statistical accuracy
compared to what could be obtained directly fromSN . Yet,
whether it is possible at all to sample a statistically sign
cant number of maximally compact configurations is a m
point to consider because it involves a ‘‘zero’’-temperatu
sampling.

In this paper, we present an algorithm for kinetica
growing a SAW configuration at any given temperatureT
>0. This algorithm, called the interacting growth-wa
~IGW! model, is able to generate more accurate data
longer walks at lower temperatures because sample attr
is less severe at lower temperatures. In fact, on a sq
lattice, the walk grows indefinitely into maximally compa
configurations atT50, in contrast to the conventional sam
pling algorithms@9,10#. We demonstrate that our model
capable of describing the universal behavior of a SA
above, at, and below theu point in two dimensions.We also
present a speculative Flory-like argument for the IGW.

We start the growth process by ‘‘occupying’’ an arbitrari
chosen siter0 of a regulard-dimensional lattice of coordina
tion numberz whose sites are initially ‘‘unoccupied’’~by
monomers!. The first step of the walk may be made in one
the z available directions, by choosing an ‘‘unoccupied’’ N
of r0, say r1, at random and with equal probability. Let th
walk be nonreversing so that it has a maximum ofz21
directions to choose from for the next step. Let$r j

mum
51,2, . . . ,zj% be the ‘‘unoccupied’’ NN’s available for the
j th step of the walk. Ifzj50, the walk cannot grow furthe
because it is geometrically ‘‘trapped.’’ It is, therefore, di
carded and a fresh walk is started fromr0. If zjÞ0, the walk
proceeds by choosing one of the available sites with a pr
ability defined as follows:

Let nNN
m ( j ) be the number of nbNN sites ofr j

m . Then, the
probability that this site is chosen for thej th step is given by
©2001 The American Physical Society01-1
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pm~r j ![
exp@2bnNN

m ~ j !e0#

(
m51

zj

exp@2bnNN
m ~ j !e0#

, ~1!

where the summation is over all thezj available sites. At
‘‘infinite’’ temperature (b50), the local growth probability
pm(r j ) is equal to 1/zj and thus, the walk generated will b
the same as the KGW. However, at finite temperatures,
walk will prefer to step into a site with more~less! nbNN
contacts depending on whethere is negative~positive!. The
probability of kinetically generating a walk configurationC
[$r0 ,r1 , . . . ,r j , . . . ,% is then given byPC5) j p(r j ). We
sete0 equal to21 without loss of generality so thatb could
correspond to the dimensionless temperature.

In Fig. 1, we have shown the typical configurations o
1000-step walk on a square lattice forb50, 2.0, 3.0, 4.0,
5.0, and 300. Evidently, the walk grows into a more comp
configuration at lower temperatures, made up of a chain
square blobs having ‘‘helical’’ and ‘‘sheetlike’’ structures.

We have generated ten million configurations of walks
to 2500 steps for various values ofb, and obtained the mea
square end-to-end distance,^r 2(N)&, as a simple unweighted
average~i.e., ^r 2(N)&5(Cr 2/N, where the summation is
over all theN configurations generated!. We have presented
^r 2(N)& as a function ofN in Fig. 2.

Sample attrition is the most severe problem forb50 and
it becomes less and less severe as the value ofb increases.
Consequently, we have presented the data up to a maxim
of N5350 forb50 andN52500 forb5300. It is clear that
the dotted lines with slopes 1.5 and 1.0 indicate
asymptotic behavior of the data forb50 andb→`, corre-
sponding to the SAW and the collapsed walk limits, resp
tively. We do not knowa priori whether a collapse transitio

FIG. 1. Typical configurations of a 1000-step walk on a squ
lattice for b50(a), 2.0(b), 3.0(c), 4.0(d), 5.0(e), and 300(f ).
01080
e

t
of

p

m

e

-

exists for our walk. We assume that it exists and is in
same universality class as theu point, and then check if our
data support this assumption.

Since it is known that the exponentsn and g have the
exact values 4/7 and 8/7 atu point in two dimensions@4#, we
have plotted̂ r 2(N)&1/2/N4/7 as a function of log(N) in Fig. 3.
The data tend to flatten out forb;4 implying thereby that
the u point is located near this value ofb. We have also
plotted ^r 2(N)&/N8/7 as a function ofb in Fig. 4 for N
5800, 1000, 1200, 1400, 1600, 1800, and 2000. The cro
over value ofb (;4 in our case! is expected@11# to corre-
spond to theu-point value.

Independently, we have obtained the exponentg from the
fraction of successful walks,S(N);Ng21e2lN, wherel is
the attrition constant and plotted them for six different valu
of b in Fig. 5. We find thatg has a value (;1.13) close to
the expected theoretical value 8/7 forb54.

Further evidence that it is indeed close to theu point is
presented in Fig. 6, where we have plotted the crosso

e

FIG. 2. Log-log plot of the mean square end-to-end distance
a function ofN for b50, 1.0, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, and 30
from top to bottom. Inset: Logarithm of the mean trapping leng
ln^L& as a function ofb.

FIG. 3. Semi-log plot of̂ r 2(N)&1/2/N4/7 as a function of log(N)
for b53.0, 3.5, 3.75, 3.9, 4.0, 4.25, 5.0, and 300, from top
bottom.
1-2
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exponentf(N) as a function of 1/N at b54 using the pre-
scription of Grassberger and Hegger@12#. The solid line is a
quartic polynomial fit to the data drawn so as to guide
eye. The extrapolated value (0.41960.003) forf is close to
the expected exact value 3/7.

All these figures put together suggest that a collapse t
sition for this walk exists and the corresponding dimensi
less nbNN contact energy is close to24.

The walk configurationC having a total of nNN(C)
5( j 51

N nNN( j ) nonbonded NN contacts, is grown with th
probability

PC5
exp@2nNN~C!be0#

)
j 51

N S (
m51

zj

exp@2nNN
m ~ j !be0# D . ~2!

It is possible to write the denominator of the above equat
ase2nNN(C)b9e0, whereb9 is an effective inverse temperatur
The value ofb9 will be less~greater! than that ofb if e0 is

FIG. 4. ^r 2(N)&/N8/7 as a function ofb for N5800 to 2000 in
steps of 200 from bottom to top.

FIG. 5. The exponentg as a function ofb. Corresponding to the
u point, g has a value;1.13.
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positive ~negative or zero!. Nevertheless, ISAW algorithm
cannot sample the walk at an effective temperature given
b8[u(b92b)u becauseb9 can only be estimateda poste-
riori on the basis of the configuration generated. An alter
tive is to have a kinetic algorithm, such as what we ha
proposed in this paper, which grows a walk by sampling
available growth sites as per theirlocal energies. This is in
contrast with the ISAW algorithm that samples fully grow
and equally weighted SAW configurations~i.e., chains! ac-
cording to theirtotal energies. To underline this basic diffe
ence, we refer to our walk as the interacting growth wa
~IGW!.

It is appropriate at this juncture to note that the differen
between our algorithm and the PERM algorithm~method B!
of Grassberger@10# is analogous to that between th
Rosenbluth-Rosenbluth algorithm~RR! @13# and the KGW
@7#. Ours is the finite-temperature generalization of t
KGW, just as PERM is the finite-temperature generalizat
of the RR method. There is noa priori reason therefore to
expect that IGW will belong to the same universality class
ISAW, they both being different models altogether. Yet, o
data seem to suggest that it may well be so.

Since the IGW is equivalent to the KGW in the limitb
→0, it is of interest to see if survival probability arguemen
such as Pietronero@14# could be devised for describing it
asymptotic behavior even if only tentatively. LetTN be an
ensemble ofN-step true self-avoiding walk@15# configura-
tions whose end-to-end distances are known to be Gaus
distributed in a space of dimensiond>2. As we move along
an arbitrarily chosen configuration, we try to estimate t
probability of surviving self intersections and geometric
trappings. This involves accounting for the probability p
step of encounterpE and the probability of trapping,pT ,
which together determine the survival of the walk. Assumi
that the trapping probability per step is a constant and a
that the encounter probability per steppE;rN

a , whererN is
the chain density anda is the order of encounter~i.e., the
number of nbNN contacts!, it has been shown thatn5(a
12)/(da12) for the KGW.

FIG. 6. The crossover exponentf as a function of 1/N. The
solid line is a quartic polynomial fit and is drawn to guide the ey
The extrapolated value is;0.41960.003.
1-3
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The observed fact that the IGW becomes more compa
lower temperatures~Fig. 1! implies, within the framework of
the above Flory-like arguments, that there should be an
hancementqE of the encounter probability per step,pE . We
expectqE to increase implicitly as a function ofb subject to
the condition thatqE→1 asb→0. On the other hand, sinc
the mean trapping length of IGW has been found to incre
exponentially withb ~inset of Fig. 2!, the trapping probabil-
ity per step may be expected to be attenuated by a fa
proportional to exp(2b). So, if we assume an implicit tem
perature dependenceqE;rN

b , we can show thatn5(a1b
12)/@d(a1b)12#. While it obviously reduces to the Pi
etronero’s formula in the limitb→0, it reduces to the form
n51/d for the collapsed state in the limitb→`. Since the
first-order encounter (a51) is sufficient to trap the walk, we
haven5(b13)/2(b12) in two dimensions. This yields th
valuebu55 corresponding to the exactu-point exponentn
54/7. It may be noted that this value is fortuitously close
our numerically estimated value. However, in order to ens
universality ofn, we should have a term proportional to th
ratio b/bu ~say, b̃[Kb/bu) rather thanb itself in the for-
mula. The proportionality constantK may then be fixed by
the u-point value ofn: K1a52(12nu)/(dnu21), d51
s
.

,
e

.
-

v.
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being a pathological case. The fact that the first-order
counter does not trap the walk atT50 implies thata also
has some temperature dependence. Moreover, the contin
dependence ofn on b that the above formula suggests is
variance with the fact that there are only three universal
gimes corresponding tob,,5 and.bu , respectively. This
needs further study.

We thus have a powerful growth algorithm for generati
SAW configurations at any given temperatureT>0. Its
strength lies in the fact that it suffers less attrition and is a
to selectively grow compact configurations at lower tempe
tures. Because it is capable of generating maximally comp
configurations at zero temperature, it may prove to be a v
useful algorithm for studying protein folding processes. W
have also demonstrated explicitly in two dimensions tha
correctly describes the collapse transition of a homopolym
Whether it is exactly the same as the~ISAW! u point is an
interesting open question, especially because the minim
walk length required to be in the asymptotic regime increa
exponentially with the inverse of temperature even in t
dimensions.

We are thankful to T. Prellberg and S. Bhattacharjee
helpful comments on this work.
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